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Summary 

The turbulent nature of atmospheric dispersion gives rise to a large amount of variation in the 
outcome of nominally similar instantaneous releases of large quantities of heavier-than-air gas. 
This has repercussions for hazard assessment work, on the nature of dispersion models, and in 
the estimation of any empirical constants they may contain. Despite this, current box models 
concern themselves solely with the prediction of ensemble mean concentrations, and do not con- 
sider the equally important problem of the prediction of the extent of the variability about the 
mean. Consequently, such ‘mean-only’ models fail to provide the hazard analyst with all the dis- 
tributional information he requires. 

An empirical study of the distributional properties of the dispersion process would ideally require 
data from a large number of replicated releases. Such large datasets would require a prohibitive 
amount of time and money to produce. However, some limited datasets obtained at large scale and 
at small scale are available for analysis, and form the basis for the work described in this paper. 

The results show, amongst other things, that the Lognormal distribution is well able to describe 
the between-replicated behaviour of the maximum concentration and of the dosage at a point in 
the flow field. This finding has important simplifying consequences on the use of ‘mean-only’ box 
models in the study of flammable and toxic releases. 

1. Introduction 

Since 1976 the Health and Safety Executive has been conducting a research 
programme into the atmospheric dispersion of large quantities of heavier-than- 
air gas in order to gain a better understanding of the risks involved in the 
storage, handling and use of large quantities of liquefied toxic or flammable 
gases. McQuaid and Roebuck [l] discuss the historic background and tech- 
nical objectives of the programme, and stress its importance in the develop- 
ment of mathematical models for predicting the likely consequences of a 
hypothetical instantaneous release of heavy gas. 

The turbulent nature of atmospheric dispersion gives rise to a large amount 
of variation in the outcome of nominally similar instantaneous releases. This 
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in turn has repercussions for hazard assessment work, on the nature of the 
dispersion models, and in the estimation of any empirical constants they may 
contain. 

The statistical concepts needed in the mathematical description of the dis- 
persion process are discussed in Chatwin [ 2 1, who points out that as far as 
releases of flammable gases are concerned, the fundamental concept is that of 
the probability distribution of gas concentration as a function of position in 
the flow field and time from release. For releases of toxic gases, on the other 
hand, the fundamental concept is that of the probability distribution of the 
dosage, i.e. the time integral of (some power of) the concentration, as a func- 
tion of position. If either of these distributions could be modelled for a given 
hypothetical release then the hazard analyst would be able to make direct prob- 
abilistic assessments of the level of risk. In both cases, the effect of ‘intermit- 
tency’ could be handled by allowing the corresponding cumulative distributions 
to have a discontinuity at the origin. This problem does not arise in the data- 
sets considered here, in view of the fact that meandering is artifically reduced 
in windtunnels, although meandering could well assume considerable impor- 
tance in practice. 

So far as the author is aware, all current ‘box’ models concern themselves 
solely with the prediction of ensemble mean concentrations, and do not con- 
sider the equally important problem of the prediction of the extent of varia- 
bility about the mean, The consequence is that such ‘mean-only’ models fail 
to provide the hazard analyst with all the distributional information he requires. 

Of course, knowledge of the mean and spread of a probability distribution is 
not in general sufficient to determine the form of the distribution. It will be 
seen, however, that for practical purposes a two-parameter probability model 
is quite well able to describe the distributions encountered. 

The preceding remarks make clear the necessity of having available datasets 
of replicated releases, conducted under a range of initial conditions, on which 
to study the distributional properties of gas concentration (for flammable 
gases) and dosage (for toxic gases). Owing to cost constraints, it was not prac- 
ticable to replicate any of the medium-scale releases at Thorney Island, though 
some of the latter may be regarded as forming a small set of replicates. How- 
ever, at smaller scale a release was replicated 20 times [ 31. It is this dataset, 
hereafter referred to as the WSL dataset, which is the subject of most of the 
work reported here. 

Section 2 describes the findings on the time variation of the ensemble mean 
and standard deviation of gas concentration in the WSL dataset, the implica- 
tions for the fitting of box models being the subject of Section 3. Section 4 is a 
study of the distributional properties of gas concentration. 

Section 5 is a parallel study of the distributional properties of dosage, and 
contains a description of a general parametric model of the mean concentra- 
tion field which could be used in the analysis of data from dense gas dispersion 
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Fig. 1. The 21 concentration-time traces in the WSL dataset. 

experiments. Section 6 discusses the matter of the comparison of results derived 
from the WSL dataset with those derived from the Phase I Thorney Island 
series and the wind tunnel experiments of Meroney and Lohmeyer [ 41. 

In passing, it should be noted that in the notation adopted here, which is 
consistent with the usual statistical practice, the ensemble mean of concentra- 
tion is denoted by ,u ( C) , and the ensemble standard deviation by a( C) . In fluid 
mechanics literature, ,u( C) is usually written as e or KC> , and o(C) as 
(7)V 

2. Moment properties of the WSL dataset 

The 21 concentration-time traces in the WSL dataset are shown in Fig. 1. 
They were recorded at 20 Hz, the upper frequency limit of the detector, each 
trace covering a period of 21 s, of which the first second was a ‘run-up’ before 
gas release. (NB All the times quoted here are from the start-up of recording 
and therefore contain the 1 s run-up period. ) The replications were conducted 
with an initial bulk Richardson number of Ri= 1.9, based on a windspeed of 
0.84 m s-’ at a reference height of 110 mm. Figure 1 in fact shows the first 10 
s of each replication only, since this was a conveniently short space of time in 
which the gas concentration was sensibly different from zero. Figure 1 may be 
compared to Fig. 46 of Hall et al. [ 3 1, which was plotted from the same dataset 
on a scaled time axis. 

The level of sampling variability in the WSL dataset was estimated by the 
method of ‘bootstrapping’ [ 5 1. The principle of the method may perhaps best 
be illustrated with reference to an ideal experiment. Suppose we have observed 
a sample x1, x2, . . . . X, of size n from a given (not necessarily Normal) parent 
population, and we wish to study the sampling variation of, say, the sample 
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mean, Ilc. To do this we draw further samples of size n from the parent popu- 
lation, compute the mean value of each new sample, and construct a histogram 
of the mean values thus derived, continuing this process until a clear picture 
emerges. In practice, of course, it is impossible to proceed in this way because, 
apart from other considerations, we do not know the cumulative distribution 
function (CDF) of the parent population, and so are not able to draw further 
samples from it. We do, however, know the empirical CDF of the observed 
sample: this is simply a step function with jumps of size n -’ at the sample 
values arranged in increasing order. The method of bootstrapping simulates 
the ideal experiment described above the using the known empirical CDF in 
place of the unknown true CDF. 

It may be seen that the larger the sample size, n, the closer will the empirical 
CDF approach the true CDF, and the closer will the histogram of the sample 
mean derived from bootstrapping the empirical CDF approach the histogram 
that would have been derived from the true CDF. In cases where the distribu- 
tion of the bootstrapped quantity may be derived theoretically, it has been 
found that its sampling variance is inversely proportional to the sample size, 
n, a property that bootstrapped estimates share with those derived by more 
conventional methods in which the parent population is assumed to belong, 
for example, to the Normal family. The sampling behaviour of the boots- 
trapped mean and standard deviation for the WSL dataset turned out to be in 
good agreement with those expected on the basis of Normal sampling theory. 
This is by no means always the case in practice, and it is of some importance 
to know that our results do not contain errors due to a false assumption of 
Normality in the parent population. 

The first statistical property to be considered is the ensemble mean as a 
function of time. Figure 2 shows the median and the upper and lower 2.5 per- 
centile curves of the variation in sample mean derived from 1000 bootstrapped 
samples of size 21. (NB The upper 2.5 percentile of a random variable such as 
a sample mean is that value which is exceeded 2.5 percent of the time, the lower 
2.5 percentile being defined similarly. The interval between the lower and upper 
2.5 percentiles thus constitutes a 95 percent confidence interval.) The number 
of bootstrapped samples required to arrive at stable estimates of the upper and 
lower percentiles was found by trial and error. The estimates obtained in this 
way were stable to within a few percentage points over repeated bootstrapping. 

Following the bootstrapping method, we are able to say that there is a 95% 
chance that the p(C) curve itself lies between the upper and lower boots- 
trapped curves. The extent of the spread between the upper and lower curves 
is consistent with the Normal Theory value of ? 1.96o( C) /21°.5 = t 0.430(C) , 
where the magnitude of a(C) may be ascertained from Fig. 4. 

By comparing the time variation in the median concentration with the sam- 
pling variation as indicated by the upper and lower 2.5 percentile curves in Fig. 
2, we can say that the WSL dataset is consistent with the claim that ,U (C) is 
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Fig. 2. Bootstrapped 95% confidence bounds for the ensemble mean concentration: original dataset. 
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Fig. 3. Bootstrapped 95% confidence bounds for the ensemble mean concentration: re-aligned 
dataset. 

constant between 2.4 s and 4.4 s. These times are the end points of the longest 
interval such that a horizontal line (at a concentration of roughly 6%) lies 
entirely within the confidence region included between the upper and lower 
curves. The same conclusion follows from Fig. 3, which is entirely analogous 
to Fig. 2 except that it was derived from the original dataset realigned so that 
all the arrival times for the different replicates coincided with the arrival time 
of the first replicate. 

In the WSL dataset it appears likely that the ensemble mean curve is visually 
similar to the individual realisations: little smoothing of discontinuities has 
taken place, because of the relatively low dispersion in cloud arrival time, cloud 
passage time and maximum concentration. If, however, the dispersion in these 
three quantities had been much greater, the resemblance would have been more 
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Fig. 4. Bootstrapped 95% confidence bounds for the ensemble standard deviation: original dataset. 
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Fig. 5. Bootstrapped95% confidence bounds for the ensemble standard deviation: re-aligneddataset. 

tenuous, as Puttock and Colenbrander [ 61 point out. Whether this is likely to 
be the case in practice remains to be seen. Carn et al. [ 71 emphasize, however 
- quite correctly, in the author’s view - that when fitting a box model to a set 
of experimental realisations the choice of ensemble is a matter for the user of 
the model, but once the ensemble has been specified the fitting of the model 
can only proceed according to established statistical methods, which take into 
account the variation in concentration over the ensemble thus chosen. 

Variation in the ensemble standard deviation O( C) may be treated in exactly 
the same way as variation in the ensemble mean p(C) . Figure 4 shows the 
results of bootstrapping the standard deviation in a manner analogous to Fig. 
2. It will be seen that as in Fig. 2 there appears to be a period of time during 
which o(C) is to all intents and purposes constant. Using the same criterion 



345 

as before, the period in question is roughly 2.4-5.4 s. Practically the same con- 
clusion follows from Fig. 5, which shows the time variation of standard devia- 
tion in the realigned dataset: the stable period is 2.6-5.6 s. 

The picture thus emerges that for the WSL dataset the flow assumes a sta- 
tistically stationary pattern for a period after the passage of the initial peak: 
during this period the intensity I(C) = o(C)/,U~C) is constant. The area-aver- 
aged results of Wheatley et al. [ 81 for the Phase I Thorney Island trials suggest 
that intensity is roughly constant, at least near the centroid of the cloud, a 
result compatible with the proposal of Chatwin and Sullivan [ 91, made on the 
basis of theoretical considerations. The implication of this finding for the 
optimising of box models is: relative prediction errors should be used rather 
than absolute prediction errors. The justification for this claim is the subject 
of the following section. As an aside, it may be remarked that quite apart from 
its significance for box model optimisation, the intensity is widely agreed to be 
a useful measure of statistical variability. 

3. The optimisation of box models 

On the assumption of Gaussian errors, the systematic optimisation of a box 
model M, in which the mean concentration field p( C(x,t)) is approximated 
by a function f(x,t;@ , where 8 is a vector of empirical constants, is achieved 
by minimising an objective function of the form 

@(8)=N-’ 1 ( C(u) -f(x,t;N 2 
-%t dC(x,t)) > 

with respect to variation in CJ where the summation is over N suitably chosen 
points in (x,t) space. If, throughout the summation, we may set a( C (x,t) ) = 
1~ ( C (x,t ) ) then we can write 

@=N-1 I-2 1 (‘-_:(‘)) 

where the dependence on x and t has been suppressed for notational conve- 
nience. If, furthermore, the model is at all representative of reality, we can 
write y=f when 0 = 8’ (the optimum parameter value), and so are led to con- 
sider a slightly revised objective function of the form 

which is proportional to the sum of squares of relative prediction errors. 
It should be noted that the use of absolute prediction errors in the optimi- 

zation of box models would only be appropriate if the variance were reasonably 
constant throughout the summation. This is known not to be the case: Chatwin 
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[ 21 has shown that, averaged over the cloud, 8 (C) is a decreasing function 
of time. 

An estimate of the intensity in any given case may be obtained by the fol- 
lowing argument. Assuming that optimization takes place at 8 = 8*, we can 
write 

@(e*) =I$* =N-’ C (y)‘,N-1 1 (y) 

since f* = p and hence 

since by assumption cr = 1~ throughout the summation. Assuming further - see 
below - that ( C--f* ) /a - N( cx,l ) , a Normal distribution with mean LY and 
variance unity, it follows from the properties of the non-central chi-square 
distribution [lo], that 

E[@*] =N-l I2 E [(?)‘I =12(1 + a2) =P +/3” 

where /3 = cy I= E [ ( C-f* ) /,u] is the ( relative) bias or systematic error in the 
model. By setting E [ $*] = qb* in the usual way, it follows that with respect to 
the model M the intensity I and the bias p may be estimated from I2 = variance 
[CC-f*)/f*l andP= mean [(C-f*)/f*].A n immediate corollary of the above 
argument is that the minimum possible value of @* occurs for a ‘bias-free’ model 
with /? = 0, in which case we would have @* =12, a purely physical parameter. 
In all other cases our estimate of I2 would be affected unavoidably by the pres- 
ence of model bias, though it would always be the case that @* z=- P, so that @* 
would act in practice as an upper bound. 

Another corollary is that if we have two models, M1: ~==f~(~,t;0) and M2: 
p= f2 (x,t;f3) for which the resulting minimum objective function values were 
$T and @f and @T c $f, then M, should be preferred to M2, even though it might 
be the case thatfl, >p2, since @* measures the overall performance of the model 
- variance + (bias) 2 - and neither aspect should be neglected at the expense 
of the other. 

4. Distributional properties of concentration in the WSL dataset 

In the previous section we were concerned with some of the statistical prop- 
erties of the WSL dataset which can be computed directly without needing to 
know the underlying probability distributions. In this section we describe the 
results of trying to fit three well-known probability models to the dataset, and 
discuss some of the implications. 
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TABLE 1 

Variation in 99th percentile of concentration 

Time CL, CLI, CLN 0.99 
(s) 

2.1 24.5 29.2 35.9 
2.2 28.2 33.9 43.3 
2.3 26.5 32.9 37.6 
2.4 19.6 23.4 28.2 
2.5 17.0 20.0 24.3 
2.6 15.2 17.7 19.1 
2.7 14.1 16.2 16.3 
- 31.8 35.8 41.3 

The three probability models are the Normal (N), Lognormal (LN) and 
Beta (B ) models [ lo]. All are two-parameter models and so are able to cope 
to a greater or lesser extent with the location and spread of the data to which 
they are fitted, but beyond this have no power to reflect more detailed aspects 
of the distributional shape. 

The models are fitted using the method of moments, i.e. by making the first 
two theoretical moments equal to the first two sample moments - and then 
ranking the fits thus obtained in terms of the maximum absolute deviation 
over the whole range of concentrations between each of the three model cumu- 
lative distribution functions ( CDFs) , and the empirical CDF. The results of 
applying this procedure over the period 1.7-5 s (i.e. from the arrival of the 
signal to the end of the ‘plateau’ after the main signal has decayed) may be 
summarised as follows: 

(i) in the critical period 1.7-2.7 s which contains the peak concentration the 
Lognormal model is (almost) uniformly superior to the other two models; 

(ii) in the period 2.7-3.6 s the Lognormal and Beta distributions vie for supe- 
riority, with no clear picture emerging; 

(iii) subsequently, from 3.6 s to 5 s the Beta and Normal distributions alter- 
nate as best fits. 

The behaviour of the higher percentiles which result from adopting each of 
the three probability models in turn as the true model may be seen in Table 1. 
In this table we show the variation in the 99th percentile of concentration over 
the period 2.1-2.7 s. The main feature is the fact that at t= 2.2 s - the time at 
which the sample mean reaches its maximum value -the predicted 99th per- 
centile is no less than 50% higher with the preferred Lognormal model than 
with the Normal model. 

The last row of Table 1 was included to show the effect of fitting the same 
three probability models are fitted to the maximum value in each replication, 
irrespective of the time at which it occurred. This row should be compared with 
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TABLE 2 

Pooled 99-percentiles and local ignition prbabilities 

ECDF N B LN 

C (S/o) 0.99 17 12.5 14 17 
0.15 
JP(0dC 0.52 0.55 0.52 0.49 
0.05 

the second row of the table, corresponding to 2.2 s from start up. It will be seen 
that the two sets of 99-percentiles are very similar. 

It is interesting to observe what happens when the concentration values for 
theperiodt=2.4s tot=4.4 s-when bothp(C) anda are steady-are 
pooled together. Table 2 shows the results of estimating the 99th percentile of 
concentration and the point ignition probability (over the usual flammable 
range for methane, i.e. 5% to 15% ) from the pooled data, which amount to 841 
readings. The ‘ECDF’ column refers to the estimate derived from the empirical 
cumulative distribution; the remaining three columns to the estimates derived 
from the Normal, Beta and Lognormal models. The point ignition probability 
was determined directly from the empirical CDF and by numerical integration 
of the fitted distribution functions in the case of the three probability models. 
Comparing these models with the pooled data, it will be seen that the Lognor- 
ma1 model gives an accurate estimate of Co.99, and an acceptable figure for the 
point ignition probability. This is confirmed by the finding that over the same 
period we have a( C) /,u (C) = 0.45 + 0.08 and a( 1nC) = 0.53 + 0.13. 

6. Distributional properties of dosage in the WSL dataset 

As far as dosages are concerned, the picture is more clear cut. Defining the 
dosage as D ( t ) = Jf, C dt’ , where t = 0 corresponds to start-up, we find that within 
the limits set by sampling theory the dosage is pretty well Lognormal. The 
basis for this claim is the behaviour of the skewness, Yi, and the flatness, YZ, of 
the successive samples of size 21 of In D(t) as time increases. The skewness 
and flatness of a probability distribution are defined, respectively, as 

Yl =Pu3/P:!3’2, Y2 = (P*/P22) -3 

where ,u2, ,u~ and p4 are the 2nd, 3rd and 4th moments about the mean - see, 
e.g. [ 111. Evidently, yl measures departure from symmetry, since if the prob- 
ability distribution were symmetric we would have p3 =O, and hence Y1 =O. 
Similarly, Y2 measures how flat or how peaked the distribution is relative to 
the Normal distribution, for which y2=0 by definition. The sharply-peaked 
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two-sided negative exponential distribution, for example, has yZ = 3, while the 
broad-shouldered uniform distribution has yZ = - 6/5. Note that these results 
contain no reference to mean and standard denotion, since by definition y1 and 
y2 are independent of location and scale. 

The skewness y I ( In D) varies from - 0.47 to - 0.1, while the flatness yZ (In 
0) varies between 0.3 and - 0.3. Assuming Lognormality, the sampling stan- 
dard deviations are + 0.53 for yl, and ? 1.1 for y2, given a sample of size 21, the 
ideal values being y1 = y2 = 0, of course. The same analysis performed on the 
dosage defined as D ( t) = Jh Cz.75 dt’ shows that, if anything, the dosage is then 
even more closely Lognormal: y1 (In D) varies between -0.24 and 0.14 and 
y2 (In 0) between - 0.1 and 0.1. Moving the origin of the integration to t= 2.1 
s (just before the signal arrives) makes no difference to the skewness and 
flatness. 

The standard deviation of the log-dosage shows a consistent tendency to 
decrease with time. Calculations demonstrate that throughout the signal 
o( lnJC2.75 dt’ ) = 2.75 cr( 1nJCdt’) , a result which, if generally true, would have 
important repercussions for hazard assessors, since it suggests that substances 
within a wide range of ‘toxicity exponents’ can be handled, providing that 
something is known of the standard deviation U( 1nJCdt’) of the log-dosage as 
usually defined. In our case, this quantity is closely comparable to the standard 
deviation of the log-concentration, which previous analysis has shown to equal 
the concentration intensity: I(C) = a( C) /p(C) = a( In C), because of 
Lognormality. 

No conclusions of a specifically statistical nature emerge from a considera- 
tion of the behaviour of the mean dosage. On the other hand, a potentially 
useful parameterization of the mean concentration field does emerge. By def- 
inition, the mean dosage at any given position is an increasing function of time, 
and by definition would be sigmoidal if the mean concentration profile were 
Gaussian. However, this is not the case: the mean concentration profile is in 
general strongly positively skewed. It is, however, well known that a logarith- 
mic transformation is able to roughly symmetrise a positively skewed function, 
in which case we would find that p( C( t)) is roughly proportional to @ [ (l/o) 
ln (~-~a)lL-~a)l, where @( ) is the standard Gaussian function - not to 
be confused with the ‘6’ used earlier to denote the objective function. In this 
expression, t, is the arrival time of the mean profile, tm is the time at which the 
mean profile attains its maximum value, and o is the spread of the mean profile 
in logarithmic time. 

More generally, we could set 

k=oo k 

lny(C(x,t)) =a0 (x)+ 1 uk (x) t-h(x) 
k=2 Gn(~) -ta(x) > 



say, and retain the first few terms in the summation, which would probably be 
sufficient in practice, in view of the property of the logarithmic transformation 
referred to above. It should be noted that a, (x) = 0 by definition. By setting 
t=&(x) we find that 

aO(n) =ln C(x,t,(x>) =ln& (x) 

say, so that pm = exp a0 (3~) gives the maximum mean concentration as a func- 
tion of position. Substituting for a, (x) in the proposed mean-field model, we 
find that finally 

k 

This parameterization is invariant with respect to a change in time origin and 
time unit, and is centred on the physically significant aspects of the concen- 
tration profile. With a few terms retained in the summation, it should give a 
good representation of ,u ( C) , at least for t TZ t,, more accuracy being achievable 
by including further terms. Finally, it should be noted that the formulation is 
directly in terms of the logarithm of the mean concentration field which, 
according to the earlier evidence, has a constant variance over the cloud, so 
that the model could be fitted by a simple unweighted least squares procedure. 

6. Comparison with other datasets 

The results described so far have been derived from a study of the WSL 
dataset, largely because it consisted of a fair number of replicates made under 
tightly controlled conditions. Additional datasets are also, of course, available 
from the Thorney Island series of field trials [ 1 ] and from some work described 
by Meroney and Lohmeyer [ 41. The results of analysing these are set out 
below. 

The analysis will be carried out in terms of C,,,, since this is an easily deter- 
mined summary statistic of the concentration record at a sensor, and is clearly 
influential in trying to determine the probability that a local ignition will occur 
at the sensor in the case of a flammable release. The other summary statistic, 
which is important for toxic releases, is the total dose JCdt’. In both cases the 
statistic removes the time element, and thereby considerably reduces the 
amount of data to be considered. 

6.1 The Thorney Island dataset 
Since the Thorney Island trials were not replicated, the most straightfor- 

ward way of deriving information on the intensity in any given trial is to take 
the maximum concentration C max observed by each sensor that ‘saw’ gas, to fit 
a statistical model to the data thus accumulated, and finally to compute the 
root-mean-square (RMS ) variation a( In C,,,) about the model. (It may be 
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TABLE 3 

Statistics of C,.. for Phase I Thorney Island Trials 

Trial No. 

15 19 14 16 07 13 17 18 09 12 

0 ( lnCmax ) 0.45 0.46 0.48 0.53 
Rk 1.9 3.7 2.1 3.0 
Windspeed 5.4 6.4 6.8 4.8 
(m 9-l) 
Atm. Stab. C/D D/E C/D D 

(2.5) (3.5) (2.5) (3) 

0.56 0.57 0.58 0.59 0.74 0.79 
9.3 2.2 13.8 1.7 26.5 25.2 
3.2 7.5 5.0 7.4 1.7 2.6 

E D D/E D D/E E 
(4) (3) (3.5) (3) (3.5) (4) 

shown - see Appendix 1 - that to a first order of approximation, a(ln 
C,,,) = IfC,,,) . ) The statistical model adopted takes advantage of the appar- 
ent Lognormality of the concentration near the maximum (as discussed in 
Section 4) and assumes that in the cloud In C,,, is a quadratic function of 
position plus a Normally distributed homogeneous random component. 

The sensors which did not ‘see’ gas could have been included in the statistical 
model by regarding them as sensors in which C,,, was less than some lower 
limit of detection, say O.l%, but was otherwise unknown. Such an extension to 
the model would have turned a straightforward linear optimisation problem 
into a potentially difficult non-linear problem, and was not thought justifiable 
in the circumstances. 

The results of this exercise carried out on 10 of the Phase I Thorney Island 
series are given in Table 3, in which the trials are arranged in order of increas- 
ing RMS variation, a( In C ,,,) , for clarity. There is no evidence in the table of 
any linear or power law relationship between the RMS variation and the initial 
bulk Richardson number, the windspeed, or the Pasquill atmospheric stability 
category (when coded as shown). 

6.2 The Meroney and Lohmeyer [4 / dataset 
This dataset consisted of maximum concentration readings from 100 wind 

tunnel replicates taken at an initial bulk Richardson number of 14.9 and a 
windspeed of 0.4 m s-l. On applying the distributional analysis described in 
Section 4 above, it was found that the three probability models were ranked in 
the order ‘Normal better than Beta better than Lognormal’, although there 
was little to choose between them. Meroney and Lohmeyer [ 41 classified the 
distribution as Normal. The 99-percentiles of C,,.,,, under the three models were 
10.2%, 10.5% and 11.5%, in order of preference. Comparing these results with 
those from the line for 2.2 s in Table 1, it will be seen that the Meroney and 
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TABLE 4 

Statistics of C,,, for other datasets 

Experiment 

WSL Meroney and Lohmeyer 

Intensity 0.52 0.21 
Ri,, 1.9 14.9 
Windspeed 0.84 0.4 
(m s-‘) 

Lohmeyer maxima show much less sensitivity to the distributional model than 
do the WSL maxima. In addition, the intensity in the Meroney and Lohmeyer 
dataset was found to be 21% + 2%. 

Table 4 shows the WSL and Meroney and Lohmeyer results for comparison 
with those in Table 3. That such a comparison may be made follows from the 
fact that in each of the trials considered in Table 3 the systematic effects on 
C mex due to sensor position have been removed by fitting a quadratic function 
of position as in Section 6.1, and the value of the intensity a( In C,,,) com- 
puted from the remaining random component. Fitting a least-squares straight 
line to the intensities in Tables 3 and 4 taken together and using bulk Rich- 
ardson number and windspeed in turn as ‘explanatory’ variables showed that 
the slope coefficient was insignificantly different from zero because of the mag- 
nitude of the dispersion about the line. There are thus no grounds on the evi- 
dence considered here for assuming any functional relationship between 
intensity and either of the explanatory variables considered, the contrast 
between the Meroney and Lohmeyer intensity and the remaining intensities 
being more apparent than real. The overall mean intensity turned out to be 
54%. 

6.3 Discussion 
The level of intensity noted above has important consequences for the use 

of box models in the assessment of flammable hazards. It is the practice to 
allow a ‘margin of safety’ in any given case by computing not only the LFL 
contour but also the l/2-LFL and possibly l/4-LFL contours, thereby 
acknowledging implicitly the stochastic nature of the dispersion process. The 
degree of conservatism represented by this practice has not, however, been 
quantified, as far as the author is aware. The solution to this problem lies in 
recognising the distinctions between contours of equal concentration and con- 
tours of equal chance of local ignition, and developing a statistical argument 
to establish the connection between them. The steps in this argument are set 
out briefly below. 

The first step, with reference to Table 3, is to determine the value of the ratio 
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TABLE 5 

Values of r=&& for Phase I Thorney Island trials 

Trial 

15 19 14 16 07 13 17 18 09 12 

a(lnCm,,) 0.45 0.46 0.48 0.63 0.56 0.57 0.58 0.59 0.74 0.79 
r=/Gm 0.25 0.24 0.23 0.19 0.18 0.17 0.17 0.16 0.10 0.09 

r =p/C,,, for each of the trials such that with ,u as the ensemble median value 
of C-3 the chance of a local ignition would be, say, l-in-1000, assuming as 
above that C,,, is distributed Lognormally and that a local ignition would 
occur if C,,, > CLFL. The value of p we are seeking satisfies 

Pq&IX >CLFL I/4=1-@ ( lnCmax - In p 
O(lnCmax) =p > 

say, where we have set p= 0.001 and @( ) is the standard Normal CDF. By 
inverting this relationship we have 

In C,,, - In p 
o(ln C,,,) 

=@-1(1--p) 

. which leads to 

r =/&In*X =exp {--a(ln C,,,) @-‘(l-p)} 

The results are given in Table 5. 
The second step is to study the variation of r from trial to trial with a view 

to determining a value of r that has a reasonably high chance of being exceeded 
in the ensemble represented by the Phase I trials - say the lower 5 percentile, 
r0,05, which has a roughly 20-to-1 chance of being exceeded and which we would 
therefore expect to be exceeded in only 1 case out of 20. Assuming that r is 
Lognormal we find that ro’o.05 = 0.09, while assuming that r is Normal we obtain 
F~,~~=O.O~, so that it appears reasonable to assume on the basis of the data 
available that r0.05 = 0.08, i.e. p = l/12 C,,,. 

The third step is to note that in box models the concentration is always a 
decreasing function of distance from the source. It follows from this that there 
is a roughly 20-to-1 chance that the l/12-LFL contour will contain the l-in- 
1000 local ignition contour. At the other end of the range of r it is easy to show 
that ro.os = 0.25 under both Normality and Lognormality, so that there is a 9- 
to-l chance that the d-LFL contour will lie inside the l-in-1000 local ignition 
contour. Similarly in the case of the l/2-LFL contour it can be shown that 
there is a 50/50 chance that it coincides with the l-in-8 chance of local ignition 
contour. Should the corresponding chance of a local ignition propogating 
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through the cloud be high then these results indicate that the use of the l/2- 
LFL contour for the assessment of flammable hazards needs to be reviewed. 
The work of Birch et al. [ 121 shows that in the case of a turbulent jet the 1/2- 
LFL contour could lie within the flammable boundary within which an initial 
flame kernel once formed will give rise to a total light-up of the jet, but outside 
which the kernel will be extinguished suggests that in more complex phenom- 
ena the probability that a local ignition will give rise to a generalised ignition 
will decrease with distance from the source. 

I have assumed in the argument above that box models predict the ensemble 
median concentration, as opposed to the ensemble mean. If, however, it is 
assumed that they predict the ensemble mean then these conclusions would 
have to be modified slightly to allow for the fact that in a Lognormal distri- 
bution the mean always exceeds the median by an amount depending on the 
variance. In the cases considered here the relative difference (mean- 
median) /median is never greater than 25% and is usually much less: the gen- 
eral trend of the conclusions is not disturbed. 

7. Conclusions 

Several conclusions follow from the analysis as here described. They are: 
(i) Within the limits of sampling error, the ensemble mean and standard 

deviation of concentration in the WSL dataset - and hence the ensemble inten- 
sity - have been shown to be constant for a period after the initial arrival of 
the concentration signal. 

(ii) The intensity of maximum concentration found in the WSL dataset is 
comparable to that found in the Phase I Thorney Island series and in the Mer- 
oney and Lohmeyer dataset. There is no evidence of any linear or power law 
relationship between the intensity and either the initial bulk Richardson num- 
ber, the windspeed or the Pasquill stability category. The overall geometric 
mean intensity of these data sets was found to be 0.52. 

(iii) Assuming constancy of concentration intensity throughout the cloud, 
a form of objective function based on relative prediction errors has been pro- 
posed when optimizing box models, and a statistical argument has been brought 
forward to show how both the concentration intensity and the model bias may 
be estimated as a by-product of the optimizing process. 

(iv) Three probab’l’t 11 y models of gas concentration have been considered: 
the Normal, the Lognormal and the Beta. A comparative goodness-of-fit test 
has shown that of these three, the Lognormal model is to be preferred in the 
initial development of the signal. This preference gradually gives way to a pref- 
erence for the Normal model, with the Beta model occupying a consistently 
intermediate position. 



(v) A parallel distributional study of the dosage shows that the Lognormal 
model is adequate throughout the signal, the more so for higher ‘toxicity 
exponents’. 

(vi) A relation has been found to exist between the geometric variances of 
dosage for different ‘toxicity exponents’ which, if true more generally, would 
bring about a great simplification in the assessment of toxic hazard. 

(vii) A general parametric model has been proposed for the ensemble mean 
concentration field, based on the similarity between concentration/time pro- 
files and the Lognormal probability density function. 

(viii ) The variation in intensity levels within the Thorney Island Trials ( 7, 
9,12-19) has been used to quantify the degree of conservatism built into cri- 
teria used for the assessment of flammable hazards. It is concluded that there 
is a 50/50 chance that the l/2-LFL contour coincides with the l-in-8 chance 
of local ignition contour and that there is roughly a 10% chance that the 1/4- 
LFL contour contains the l-in-1000 local ignition contour. 

It is recommended that further datasets are needed to verify the conclusions 
and to test the proposals reported here. Such datasets should be gathered using 

(i) more replicates than the 20 of the WSL dataset, in order to provide for a 
more accurate analysis of distributional properties; 

(ii) more instrumentation, in order to study the interaction between the con- 
centration field and the wind field, and 

(iii) a variety of initial conditions, in order to confirm or refute the finding 
that the intensity of maximum concentration is insensitive to variation 
in the initial bulk Richardson number, the windspeed and the Pasquill 
stability category. 
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Appendix 1 

Derivation of a(111 Cm,,) =Z(C,,,) 

Sveshnikov [ 131 shows by the usual linearization argument that if X is a 
random variable and g( ) is any differentiable function, then the variance of 
the random variable Y=g(X) is related to the variance of X by the expression 

o2,= (g(/4c))2& 

Substituting g(X) = In X it follows that 2 (Pi) = ,uu,’ and a$ = offi M 
&o$ = I$, since by definition Ix= o x /,u z The result follows by taking 
x= c,,,. 


